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ODDS = PROBABILITY / (1 – PROBABILITY)
PROBABILITY = ODDS / (ODDS + 1)

PROBABILITY

Meaning Long Run Proportion
Estimate of (Un)certainty
Amount prepared to bet

Use Describe likely behaviour of data
Communicate (un)certainty
Measure how far data are from
   some hypothesized model

How Arrived At

Subjectively

Intuition, Informal calculation, consensus

Empirically

Experience (actuarial, ...)

Pure Thought

Elementary Statistical Principles

If necessary, breaking Complex

outcomes into simpler ones

Advanced Statistical Theory

calculus e.g. Gauss' Law of Errors
References
• WMS5, Chapter 2 • Moore & McCabe Chapter 4    •Colton, Ch 3
• Freedman et al. Chapters 13,14,15     •Armitage and Berry, Ch 2
• Kong A, Barnett O, Mosteller F, and Youtz C. "How Medical Professionals
Evaluate Expressions of Probability" NEJM 315: 740-744, 1986 ... on reserve

• Death and Taxes • Rain tomorrow • Cancer in your lifetime  • Win
lottery in single try • Win lottery twice • Get back 11/20 pilot
questionnaires • Treat 14 patients get 0 successes • Duplicate
Birthdays  • Canada will use $US before the year 2010

•  OJ murdered  his wife
•  DNA matched
•  OJ murdered wife | DNA matched

 " | " is shorthand for "given that.."

• 50 year old has colon ca
• 50 year old with +ve haemoccult test has colon ca
• child is Group A Strep B positive
• 8 yr old with fever & v. inflamed nodes is Gp A Strep B positive
• There is life on Mars
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M&M Ch 4.1, 4.2, 4.5  Probability

How to calculate probabilities

Probability Calculations

"I figure there's a 40% chance of showers, and a
10% chance we know what we're talking about"

Wall Street Journal

Basic Rules

A
B

A
B

A and B

Probabilities add to 1

Prob(event) =
 1 - Prob(complement)

   

ADDITION  FOR "EITHER A OR B"

If mutually exclusive
"PARALLEL"   P(A or B) = P(A) + P(B)

If overlapping
  P(A or B) = P(A) + P(B) - P(A and B)

A

Not A
Not B

B

B
Not B

   MULTIPLICATION  FOR "A  AND B" OR "A THEN B"

If independent
"SERIAL" P(A and B) = P(A) • P(B)

If dependent
P(A and B) = P(A) • P(B | A)

Conditional Probability P(B | A) = Probability of B "given A" or "conditional on A"

More Complex:
• Break up into elements
• Look for already worked-out calculations
• Beware of intuition, especially with "after the fact" calculations for non-

standard situations
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M&M Ch 4.1, 4.2, 4.5  Probability

Examples of Conditional Probabilities...
PERSONS 

Smoke?
Develop 
Lung Ca.?

YES

NO

YES

YES

NO

NO

YES

YES

NO
NO

NO

YES

PERSONS 

Smoke?
Develop 
Lung Ca.?

GENDER: 2 BIRTHS
1st 2nd

M

M

F

0.5

0 .5

0 .5

0 .5

F
M

0.5
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F

0 .25

0 .25

0 .25

0 .25

GENDER: 2  from  5 M & 5 F

5 /10

20/90
4 /9

5 /10

5 /9
25/90

4 /9

5 /9
25/90

20/90

1st 2nd

M

M
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F
M

F
Testing Dx Tests.. .

Disease Test

+

+

–

–
+

–

Dx Tests In Practice. . .

+

+

–

-
+

–

DiseaseTestSMOKERS: 1 M & 1 F 
M F

YES

NO

SMOKERS: Husband & Wife

H W
YES

YES

NO

NO

YES

YES

NO
NO

NO

YES

O. J.  SIMPSON 

Murdered 
wife?

YES

NO

YES

YES

NO

NO

YES

YES

NO

NO

NO

YES

DNA 
Match?

O. J.  SIMPSON 
Murdered 
wife?

DNA 
Match?

page 3



M&M Ch 4.1, 4.2, 4.5  Probability

Examples of Conditional Probabilities...
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Pre-test Probability or Odds → Post-Test Probability or Odds

Positive Predictive Value: Prob[ Disease+ | Test + ]

PPV =
PriorProb[D]× Sens

PriorProb[D]× Sens + (1− PriorProb[D])× (1− Spec)

Negative Predictive Value: Prob[ Disease - | Test - ]

NPV =
(1− PriorProb[D])× Spec

(1− PriorProb[D])× Spec + PriorProb[D]× (1− Sens)

1



Pre-test Probability or Odds → Post-Test Probability or Odds

Post-Test Odds of D+ after positive (+) test [“Pre-test” = Prior]

Post-test Odds = Likelihood Ratio(+) × Pre-test Odds

=
Sensitivity

1 - Specificity
× Pre-test Probability

1 - Pre-test Probability

=
True Positive Fraction

False Positive Fraction
× Pre-test Probability

1 - Pre-test Probability

Post-Test Odds of D+ after negative (-) test

Post-test Odds = Likelihood Ratio(−) × Pre-test Odds

=
1 - Sensitivity

Specificity
× Pre-test Probability

1 - Pre-test Probability

=
False Negative Fraction

True Negative Fraction
× Pre-test Probability

1 - Pre-test Probability
The odds formulation separates the characteristics of test (LR) from the context (PriorProb[D]).
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M&M Ch 4.1, 4.2, 4.5  Probability

Reverse Probabilities:         Probability[ data | Hypothesis ] ≠ Probability[ Hypothesis | data ]

U.S. National Academy of Sciences under fire
over plans for new study of DNA statistics:

During the trial, a forensic scientist gave the first probability in reply

to a question about the second.  Mansfield convinced the appeals

court that the error was repeated by the judge in his summing up,

and that this slip -- widely recognized as a danger in any trial

requiring the explanation of statistical arguments to a lay jury --

justified a retrial.

Confusion leads to retrial in UK.
[NATURE p 101-102 Jan 13, 1994 ]

... He also argued that one of the prosecution's
expert witnesses, as well as the judge, had
confused two different sorts of probability.

In their judgement, the three appeal judges, headed by the Lord

Chief Justice, Lord Farquharson, explicitly stated that their decision

"should not be taken to indicate that DNA profiling is an unsafe

source of evidence".

One is the probability that DNA from an

individual selected at random from the

population would match that of the semen

taken from the rape victim, a calculation

generally based solely on the frequency of

different alleles in the population.

Nevertheless, with DNA techniques being increasingly used in
court cases, some forensic scientists are worried that flaws in the
presentation of their statistical significance could, as in the Deen
case, undermine what might otherwise be a convincing
demonstration of a suspect's guilt.

The other is the separate probability that a

match between a suspect's DNA and that

taken from the scene of a crime could have
arisen simply by chance 1 -- in other words that

the suspect is innocent despite the apparent

match. This probability depends on the other

factors that led to the suspect being identified

as such in the first place.

Some now argue, for example, that quantified statistical
probabilities should be replaced, wherever possible, by a more
descriptive presentation of the conclusions of their analysis. "The
whole issue of statistics and DNA profiling has got rather out of
hand," says one.

Others, however, say that the Deen case has been important in
revealing the dangers inherent in the 'prosecutor's fallacy'. They
argue that this suggests the need for more sophisticated
calculation and careful presentation of statistical probabilities.

"The way that the prosecution's case has been presented in trials
involving DNA-based identification has often been very
unsatisfactory," says David Balding, lecturer in probability and
statistics at Queen Mary and Westfield College in London.
"Warnings about the prosecutor's fallacy should be made much
more explicit.  After this decision, people are going to have to be
more careful."

1 Underlining is mine (JH). The wording of the singly-
underlined phrase is imprecise; the doubly-underlined
wording  is much better ..  if you read 'despite' as "given
that" or "conditional on the fact of" JH
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M&M Ch 4.1, 4.2, 4.5  Probability

Reverse Probabilities:         Probability[ data | Hypothesis ] ≠ Probability[ Hypothesis | data ]

Apparently, Donnelly suggested to the Lord Chief Justice and

his fellow judges that they imagine themselves playing a game

of poker with the Archbishop of Canterbury. If the Archbishop

were to deal himself a royal flush on the first hand, one might

suspect him of cheating.  Assuming that he is an honest card

player (and shuffled eleven times) the chance of this happening

is about 1 in 70,000.

"The prosecutor's fallacy"
Who's the DNA fingerprinting pointing at?

New Scientist, 29 Jan. 1994, 51-52. David Pringle

Pringle describes the successful appeal of a rape case where

the primary evidence was DNA fingerprinting. In this case the

statistician Peter Donnelly opened a new area of debate. He

remarked that But if the judges were asked whether the Archbishop were

honest, given that he had just dealt a royal flush, they would be

likely to place the chance a bit higher than 1 in 70,000 *.
forensic evidence answers the question

"What is the probability that the defendant's DNA

profile matches that of the crime sample,

assuming that the defendant is innocent?"

The error in mixing up these two probabilities

is called the "the prosecutor's fallacy",

and it is suggested that newspapers regularly

make this error.
while the jury must try to answer the question

"What is the probability that the defendant is

innocent, assuming that the DNA profiles of the

defendant and the crime sample match?"

Apparently, Donnelly's testimony convinced the three judges

that the case before them involved an example of this and they

ordered a retrial

from Vol 3.02 of Chance News
(JH) Donnelly's words make the contrast of the two
types of probability much  "crisper". The fuzziness of
the wording on the previous page is sadly typical of
the way statistical concepts often become muddied
as they are passed on.

*  (JH) This is a very nice example of the advantages of
Bayesian over Frequentist inference .. it lets one take
one's prior knowledge (the fact that he is the
Archbishop) into account.
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"Homegrown" Exercises around M&M Chapter 6 -3- Exercise to Illustrate Type I Errors and Statistical Power

DISTINGUISHING POPULATIONS WITH DIFFERENT MEAN BIRTHWEIGHTS

The entries in the 4 panels below represent birthweights, recorded to the nearest 10 grams, but with the ending 0 removed to save space. Thus the very first entry of 336 in Panel A
represents a birthweight of 3360 grams or 3.36 Kg. The birthweights in a panel are all from infants of the same sex, but different panels may be from different sexes. The standard
deviation of the entries in each panel is approximately SD = 43 (430 grams).

By eye, by comparing all the entries in a panel with all of those in another, you may be able to discern if two panels have different means. But what can you conclude if you take
just a sample from each of 2 panels and perform a formal test of significance on the difference in the sample means? Details for exercise are explained on p 5.

PANEL A PANEL B

 397   399   306   371   356     368   362   396   338   326
 331   411   422   413   381     399   385   333   293   311
 319   349   268   383   398     328   385   373   274   467
 328   377   300   341   386     387   265   411   378   358
 373   336   366   325   322     283   329   323   327   401

 292   313   340   424   311     363   335   350   343   364
 348   298   314   401   384     362   370   375   373   312
 399   355   435   437   362     316   371   340   315   359
 414   302   317   407   432     334   428   386   406   388
 325   334   448   344   373     296   301   347   361   294

 336   357   338   379   386     362   277   340   404   300
 295   340   264   317   303     342   340   400   348   327
 294   390   347   346   294     407   408   380   343   413
 346   360   321   379   338     345   377   362   318   341
 428   346   354   358   353     401   338   283   356   275

 366   303   351   378   413     381   319   312   298   281
 372   380   282   303   345     282   445   304   339   357
 314   264   380   389   264     325   327   298   334   347
 299   428   338   277   268     310   345   316   396   381
 400   318   341   321   328     370   336   371   371   449

PANEL C

 344   382   358   429   398     336   406   366   385   357
 258   346   401   315   430     373   377   346   378   357
 346   406   425   346   367     347   388   348   300   326
 333   397   355   282   360     421   416   346   370   329
 366   360   282   393   329     352   450   371   379   323

 430   397   349   321   334     369   367   274   427   355
 349   393   295   372   283     313   316   268   334   413
 322   397   309   348   376     345   497   343   361   391
 327   374   344   354   322     277   287   396   323   389
 391   303   319   314   368     389   343   342   330   369

PANEL D

 262   328   363   399   328     375   310   417   278   346
 340   350   364   299   318     339   307   381   314   388
 355   290   331   304   351     333   382   310   331   287
 370   356   394   265   368     288   448   416   350   333
 306   360   236   273   381     435   332   323   349   354

 294   337   390   408   299     345   375   428   273   353
 407   419   333   331   330     387   303   275   334   335
 391   348   348   302   356     370   374   353   352   432
 353   346   356   342   382     293   348   332   375   350
 346   407   339   364   288     389   282   434   380   378

Key
Cailíní[céad/deireadh -- trí céad, daiched is a trí/seacht]
Buachaillí [-- trí céad, deich is daichead, is a sé]
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"Homegrown" Exercises around M&M Chapter 6 -3- Exercise to Illustrate Type I Errors and Statistical Power

DISTINGUISHING POPULATIONS WITH DIFFERENT MEAN ADULT HEIGHTS

The entries in the 4 panels below represent adult heights, recorded to the nearest centimetre. Thus the 1st entry (188) in Panel A represents a height of 188 cm or 1.68m. The
birthweights in a panel are all from adults of the same sex, but different panels may be from different sexes. The standard deviation of the entries in each panel is approximately SD
= 6cm.

By eye, by comparing all the entries in a panel with all of those in another, you may be able to discern if two panels have different means. But what can you conclude if you take
just a sample from each of 2 panels and perform a formal test of significance on the difference in the sample means? Details for exercise are explained on p 5.

PANEL A

 188   178   175   168   169     171   170   166   161   171
 180   178   184   174   168     176   175   167   182   177
 181   183   185   178   165     172   178   176   164   186
 176   179   169   169   184     169   173   173   173   177
 177   170   179   183   183     172   189   181   174   171

 170   182   163   171   176     176   183   181   174   175
 171   167   175   175   174     168   170   175   185   181
 183   180   178   170   174     173   176   173   175   173
 165   172   175   183   167     171   176   182   174   170
 187   185   167   169   168     178   182   178   171   175

PANEL B

 156   159   169   161   157     158   171   166   169   170
 168   170   175   171   167     168   160   170   173   165
 160   162   156   150   168     157   168   167   159   168
 159   165   165   165   164     163   159   169   176   176
 166   155   164   162   172     172   156   166   166   161

 165   162   177   162   160     171   164   174   164   173
 174   160   164   163   171     172   159   157   159   168
 161   166   160   167   168     162   158   154   159   167
 166   163   166   177   168     172   177   169   175   166
 158   156   165   161   162     157   168   163   167   166

PANEL C

 171   175   178   168   181     177   185   174   177   177
 169   174   184   173   182     179   178   167   186   175
 176   172   176   174   174     170   184   173   174   174
 179   177   177   176   171     161   172   168   177   176
 186   172   173   184   167     161   166   171   180   163

 181   176   179   176   170     172   165   178   174   182
 169   179   176   183   172     172   170   178   179   178
 179   166   174   184   169     164   177   180   183   172
 183   164   178   166   177     186   174   179   175   179
 183   165   174   173   172     171   176   188   181   169

PANEL D

 165   161   168   155   172     160   176   170   162   161
 167   158   155   163   158     159   174   179   161   157
 176   171   160   164   167     173   174   163   162   157
 155   167   161   163   169     168   158   166   160   167
 163   162   165   167   169     161   174   164   154   174

 171   168   162   173   164     172   170   166   165   163
 166   168   158   161   175     164   164   164   167   173
 162   164   161   169   170     157   164   169   161   166
 174   168   174   168   156     160   153   167   167   156
 176   165   161   164   161     163   168   161   173   166

Key
Fir [ar clé -- céad, deich is trí fichid, cúig]
Mná [-- céad, trí fichid, cúig ]
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"Homegrown" Exercises around M&M Chapter 6 -3- Exercise to Illustrate Type I Errors and Statistical Power

• Birthweight:
Perform a test of each of the following 4 (obviously competing, so not independent)
contrasts; use new samples of size n=4 and n=4 for each of the 4 tests; use a z-test (σ
is given) with alpha = 0.10  (two-sided, so zalpha=1.645) for each. []

  1. µA vs. µB 2.  µC vs. µD  3. µA vs. µD 4.  µB vs.  µC

Value of 1.645 σ 
1
n1

 +  
1
n2

 

------------------------------------------------------------------------------
BIRTHWEIGHTS ADULT HEIGHTS
σ = 43 g x 10 σ = 6 cm

n1 = n2 =   4  50   g x 10 7 .0  cm
• Adult heights:
 test the following 4 contrasts*, again using n = 4 vs n = 4.

  1. µA vs. µC 2.  µB vs. µD  3. µA vs. µD 4.  µB vs.  µC

  * NB: 1 and 2 are not the same as 1 and 2 for birthweight above.

Just for interest, here is what is is for other sample sizes...

n1 = n2 =   8 35.4 g x 10 4.9 cm
n1 = n2 = 16 25.0 g x 10 3.5 cm

On class, I will 'play god' and tell you which contrasts belong in
which rows. In practice, you may not be able to unequivocally
determine the truth --  or it may take a lot more work. And
determining how big a difference is takes even more work.

To save you time, the structure of the tests is laid out below.

To help with rapid compilation of results in class, circle below
which contrasts yielded "statistically significant" differences and
BRING YOUR 8  DECISIONS TO CLASS. Results of statistical tests [columns] performed by students in

relation to real situations[rows]Birthweights A vs. B        C vs. D        A vs. D        B vs. C

"Can't say" "different"Adult Heights A vs. C        B vs. D        A vs. D        B vs. C
  p > 0.10 p < 0.10  No.

"Arithmetic" of Testing if 2 panels have same mean BIRTHWEIGHT ("negative") ("positive")   of
  ("N.S") ("Stat. sig.") Tests

H0: µ1 = µ2 [same sex]   α = 0 . 1 0  (2-sided)     Halt: µ1 ≠ µ2 [different sexes]

same sexReject H0 (i.e. infer that µ1 ≠ µ2 ) if

.
x–1 –  x–2 

σ 
1
n1

 +  
1
n2

 

  >  1.645  or  
x–1 –  x–2 

σ 
1
n1

 +  
1
n2

 

   < –1.645

                     (use z-test since σ is given)

different sexes

"Can't say" "different"
i.e. conclude "different sexes" if

 | x–1 – x–2 | > 1.645 σ 
1
n1

 +  
1
n2

  ***

  p > 0.10 p < 0.10 No.
ADULT HEIGHT ("negative") ("positive")         of

  ("N.S") ("Stat. sig.") Tests

same sexσ is given, so we can work out ahead of time (from *** ) what difference between  x–

)1 and x–2  would lead us to conclude "different sexes"... the average birthweights need
to be > 50 (ie 500g) apart, and average heights > 7 cm apart. different sexes

[with t-tests, we don't have σ, and in fact have to calculate s from sample)
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Results of statistical tests [columns] performed by students
in relation to real situations [rows]

BIRTHWEIGHT

"Can't say"
p > 0.10

("negative")
("N.S")

"different"
p < 0.10

("positive")
("Stat. sig.")

No. of
Tests

3.    A vs. D   (=)

same sex

4.    B vs. C   (=)

KD   KD   AB  AB  AC  AC   AS   AS
BF   TE   TE  NW  NW  NW   NW   NW
NW   NW   NW  PW  PW  RB   RB   AS
AS   BM   AS  SP  SP  MPS  MPS  VC
VC   SR   SR  RP  RP  AE   JB   JB
MS   MS   KO  KO  CF  CF   US1  US1
LR   LR   BM  MA  MA  BMcG BMcG USZ
USZ  VS   VS  KR  JS  JS   JMcK JMcK
TdiP TdiP AM  AR  AR  SF   SF   GF
GF

73

AS  MPS  MS  MM MM  KR  AM  BF

8 81
1.    A vs. B   (≠)

different
sexes

2.    C vs. D   (≠)

BM   AS   AS  SP  SP  MPS  MPS  MS
VC   VC   SR  SR  RP  RP   AE   JB
JB   MS   MS  KO  KO  CF   CF   USI
US1  LR   LR  MA  MA  BMcG BMcG US2
US2  MM   MM  VS  VS  KR   JS   JS
JMcK JMcK SF  SF  AM  AM   AR   AR
TdiP TdiP PW  PW  RB  RB   AS   AS
NW   NW   NW  NW  NW  NW   NW   BF
BF   TE   TE  AC  AC  AS   AB   AB
KD   KD   GF  GF

76

BM  MS   AS  KR NW  AS

6 82
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Results of statistical tests [columns] performed by students
in relation to real situations [rows]

ADULT HEIGHT

"Can't say"
p > 0.10

("negative")
("N.S")

"different"
p < 0.10

("positive")
("Stat. sig.")

No. of
Tests

3.    A vs. C   (=)

same sex

4.    B vs. D   (=)

BM   BM   SP  AS   AE   AE  RP   SR
SR   MS   MS  USI  CF   CF  KO   KO
JB   JB   KD  KD   AS   AS  AC   AC
TE   TE   BF  BF   NW   NW  NW   NW
NW   NW   NW  NW   AS   RB  PW   PW
PW   SF   SF  AR   AM   AM  TdiP TdiP
JMcK JMcK JS  JS   KR   KR  VS   MM
MM   US2  USZ BMcG BMcG MA  MA   LR
LR   GF   GF

67

AS  RB  AR  VS  VC  VC  SP AS

8 75
1.    A vs. D   (≠)

different
sexes

2.    B vs. C   (≠)

EB   NW   NW  NW   JMcK MA  MA  US1
KO   JB   MS  SP   GF

13

KD   KD   EB  AS  AS  AC AC   TE
TE   BF   BF  NW  NW  NW BMcG AS
BMcG AS   RB  RB  PW  PW SF   SF
AR   AR   AM  AM TdiP JS TdiP JS
KR   KR   VS  VS  MM  MM JMcK CF
CF   KO   JB  AE  RP  SR US2  US2
NW   NW   LR  LR  USI SR VC   VC
MS   SP   AS  AS  BM  BM GF

63 76
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M&M Ch 6.3 and 6.4  Introduction to Inference ... Use and Misuse  of  Statistical Tests

"Operating" Characteristics of a Statistical Test
The quantities (1 - β) and (1 -  α) are the "sensitivity
(power)" and "specificity" of the statistical test.
Statisticians usually speak instead of the complements of
these probabilities, the false positive fraction (α ) and the
false negative fraction (β) as "Type I" and "Type II" errors
respectively [It is interesting that those involved in
diagnostic tests emphasize the correctness of the test
results, whereas statisticians seem to dwell on the errors of
the tests; they have no term for 1-α ].

As with diagnostic tests, there are 2 ways statistical test
can be wrong:

1) The null hypothesis was in fact correct but the

sample was genuinely extreme and the null

hypothesis was therefore (wrongly) rejected.

2) The alternative hypothesis was in fact correct but

the sample was not incompatible with the null

hypothesis  and so it was not ruled out. Note that all of the probabilities start with (i.e. are
conditional on knowing) the truth. This is exactly
analogous to the use of sensitivity and specificity of
diagnostic tests to describe the performance of the tests,
conditional on (i.e. given) the truth. As such, they describe
performance in a "what if" or artificial  situation, just as
sensitivity and specificity are determined under 'lab'
conditions.

The probabilities of the various test results can be put in
the same type of 2x2 table used to show the
characteristics of a diagnostic test.

Result of Statistical Test

"Negative"
(do not

reject H0)

"Positive"
(reject H0 in

favour of Ha) So just as we cannot interpret the result of a Dx test
simply on basis of sensitivity and specificity, likewise we
cannot interpret the result of a statistical test in isolation
from what one already thinks about the null/alternative
hypotheses.

H0     1 -  α                    α

TRUTH

Ha        β                    1 - β
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M&M Ch 6.3 and 6.4  Introduction to Inference ... Use and Misuse  of  Statistical Tests

Interpretation of a "positive statistical test" But if one follows the analogy with diagnostic tests, this
statement is like saying that

It should be interpreted n the same way as a "positive

diagnostic test" i.e. in the light of the characteristics of the subject

being examined. The lower the prevalence of disease, the

lower is the post-test probability that a positive diagnostic test

is a "true positive". Similarly with statistical tests. We are now

no longer speaking of sensitivity = Prob( test + | Ha ) and

specificity = Prob( test - | H0 ) but rather, the other way round,

of Prob( Ha | test + ) and Prob( H0 | test - ), i.e. of positive and

negative predictive values, both of which involve the

"background" from which the sample came.

"1-minus-specificity is the probability of being wrong if, upon
observing a positive test, we assert that the person is diseased".

We know [from dealing with diagnostic tests] that we cannot turn
Prob( test  | H ) into  Prob( H   | test ) without some knowledge
about the unconditional or a-priori Prob( H ) ' s.

The influence of "background" is easily understood if one
considers an example such as a testing program for potential
chemotherapeutic agents. Assume a certain proportion P are
truly active and that statistical testing of them uses type I and
Type II errors of α and β respectively. A certain proportion of
all the agents will test positive, but what fraction of these
"positives" are truly positive? It obviously depends on α and
β, but it also depends in a big way on P, as is shown below for
the case of α = 0.05, β = 0.2.

A Popular Misapprehension: It is not uncommon to see or
hear seemingly knowledgeable people state that

            P --> 0.001    .01    .1    .5

TP = P(1- β)  -->  .00080  .0080  .080  .400
FP = (1 - P)(α)->  .04995  .0495  .045  .025
Ratio TP : FP -->  ≈ 1 : 62      ≈ 1: 6       ≈ 2 : 1   ≈ 16 : 1

"the P-value (or alpha) is the probability of being
wrong if, upon observing a statistically significant
difference, we assert that a true difference exists"

Glantz (in his otherwise excellent text)  and Brown (Am J Dis
Child 137: 586-591, 1983 -- on reserve) are two authors who
have made statements like this. For example, Brown, in an
otherwise helpful article, says (italics and strike through by JH) :

Note that the post-test odds TP:FP is

P(1- β) : (1 - P)(α)   = { P : (1 - P) }    ×          [  
1- β
α   ]

"In practical terms, the alpha of .05 means that the

researcher, during the course of many such decisions, accepts

being wrong one in about every 20 times that he thinks he has

found an important difference between two sets of

observations"   1

         PRIOR         ×     function of TEST's
              characteristics

i.e. it has the form of a "prior odds" P : (1 - P),  the
"background" of the study,  multiplied by a "likelihood ratio
positive" which depends only on the characteristics of the
statistical test. Text by Oakes helpful here1[Incidentally, there is a second error in this statement : it has to do with

equating a "statistically significant" difference with an important one...
minute differences in the means of large samples will be statistically
significant ]
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Are All Significant P Values Created Equal? The Analogy  Between Diagnostic Tests and Clinical Research

Warren S Browner, MD MPH and Thomas B Newman, MD MPH †
The answer to these questions is  "No!" What then is a P value? It is the likelihood
of observing the study results under the assumption that the null hypothesis of no
difference is true.  Probably because this definition is elusive and intimidating,
understanding P values (and other statistical concepts like power, confidence
intervals, and multiple hypothesis testing) is often left to experts in the field.  It is
easier just to check whether a P value is .05 or less, call the result "statistically
significant," regard the tested hypothesis as probably true, and move on to the next
paragraph.

Just as diagnostic tests are most helpful in light of the clinical

presentation, statistical tests are most useful in the context of

scientific knowledge.  Knowing the specificity and sensitivity of a

diagnostic test is necessary, but insufficient: the clinician must also

estimate the prior probability of the disease.  In the same way,

knowing  the P value and power, or the confidence interval, for the

results of a research study is necessary but insufficient: the reader

must estimate the prior probability that the research hypothesis is

true.  Just as a positive diagnostic test does not mean that a patient

has the disease, especially if the clinical picture suggests otherwise,

a significant P value does not mean that a research hypothesis is

correct, especially if it is inconsistent with current knowledge.

Powerful studies are like sensitive tests in that they can be

especially useful when the results are negative.  Very low P values

are like very specific tests; both result in few false-positive results

due to chance.  This Bayesian approach can clarify much of the

confusion surrounding the use and interpretation of statistical tests.

(JAMA 1987;257:2459-2463)

Readers of medical literature need not give up quite so quickly, however.  As
Diamond and Forrester5 pointed out, many statistical concepts have remarkably
similar analogues in an area familiar to clinicians - the interpretation of diagnostic
tests.  In the diagnosis of Cushing's syndrome, for example, most clinicians
recognize that an elevated serum cortisol level is more useful than an elevated blood
glucose level, and that an elevated cortisol level is more likely to be due to Cushing's
syndrome in a moon-faced patient with a buffalo hump and abdominal striae than in
an overweight patient with hypertension.6-7 Why?? Because the interpretation of a
test result depends on the characteristics of both the test and the patient being
tested.8-13

The same type of reasoning - called Bayesian analysis  after Thomas Bayes, the
mathematician who developed it more than 200 years ago14  - can also be used to
clarify  the meaning of the P value and other statistical terms.  Although this
application of Bayes' ideas has been discussed in epidemiologic and statistical
literature,15-18 it has received less attention in the journals read by clinicians.  In
this article, we begin with the basic aspects of the analogy between research studies
and diagnostic tests, such as the similarity between the power of a study and the
sensitivity of a test, and then examine more challenging issues, such as how a study
with multiple hypotheses resembles a serum chemistry panel.

THE ANALOGY

IN THE four ORIGINAL CONTRIBUTIONS in this issue of THE JOURNAL, the
authors report the results of statistical tests of 76 hypotheses.1-4 Of these, 32 had
significant P values (P<.05). But do these P values imply that the 32 hypotheses are
true? Or that 95% of them are true? Are all significant P values created equal?

An overview of the analogy between research studies and diagnostic tests is shown in
Table 1. In this analogy, a clinician obtains diagnostic data to test for the presence of
a disease, such as breast cancer, and an investigator collects study  data to determine
the truth of a research  hypothesis   such as that the efficacies of two drugs differ in
the treatment of peptic ulcer disease. (The research hypothesis is often called the
alternative  hypothesis  in standard terminology.) The absence of a disease  (no
breast cancer) is like the null hypothesis   of no difference in the efficacy of the two
drugs.

† From the Departments of Medicine (Dr Browner), Pediatrics (Dr Newman), and
Epidemiology and International Health (Drs Browner and Newman), School of
Medicine, University of California at San Francisco, and the Clinical Epidemiology
Program, Institute for Heath Policy Studies, San Francisco (Drs Browner and
Newman). The term "positive" is used in its usual sense: to refer to diagnostic tests that are

consistent with the presence of the disease and to studies that have statistically

Interpretation of Statistical Tests: Browner and Newman 1



Are All Significant P Values Created Equal? The Analogy  Between Diagnostic Tests and Clinical Research

significant results.  Similarly, "negative" refers to diagnostic tests consistent with
the absence of disease and research results that fail to reach statistical significance.
Thus there are four possible results whenever a patient undergoes a diagnostic test.
Consider the use of fine-needle aspiration in the evaluation of a breast mass, for
example (Table 2).  If the patient has breast cancer, there are two possibilities: the
test result can either be correctly positive or incorrectly negative.  On the other hand,
if the patient actually does not have cancer, then the result will either be correctly
negative or incorrectly positive.  Similarly, there are four possible results whenever
an investigator studies a research hypothesis (Table 3).  If the efficacies of the two
drugs really do differ, there are two possibilities: the study can be correctly positive if
it finds a difference or incorrectly negative if it misses the difference.  If the two drugs
actually have the same efficacy, then the study can either be correctly negative if it
finds no difference or incorrectly positive if it does find one.

false-positive rate is 5%: of 100 women without breast cancer, five will have falsely
positive test results.

Table 2.—The Four Possible Results of a Diagnostic Test

      If Breast Mass is actually:

Malignant Benign

Positive   This is a true-positive test:   This is a false-positive test:
And Result of result is correct result is incorrect
Fine-Needle
Aspirate is:

Negative This is a false-negative test: This is a true-negative test
result is incorrect result is correct

Similarly, the relationships between the four possible outcomes of a research study
are usually expressed as the power  and P value  of the study, which are determined by
assuming that the truth or falsity of the null hypothesis is known.  Power is the
likelihood of a study being positive if the research hypothesis is true (and the null
hypothesis is false); it is analogous to the sensitivity of a diagnostic test.  The P
value is the likelihood of a study being positive when the null hypothesis is true; it
is analogous to the false-positive rate (1 - specificity) of a diagnostic test.  A study
comparing two drugs in the treatment of ulcers that has an 80% chance of being
correctly positive if there really is a difference in their efficacies wuould have a power
of 0.80. A study with a 5% chance of being incorrectly positive if there is no
difference between the drugs would have aP value of .05. (Conventionally, when the
P value is less than a certain predetermined "level of statistical significance," usually
.01 or .05, the results are said to be "statistically sign)ficant.")

Table l.-The Analogy Between Diagnostic Tests and Research Studies

Diagnostic Test Research Study

Absence of disease Truth of null hypothesis

Presence of disease Truth of research (altematve hypothesis

Positive result (outside normal limits) Positive result (reject null hypothesis)

Negative result (within normal limits) Negative result (fail to reject null
hypothesis)

Sensitivity Power
Table 3.—The Four Possible Results of a Research Study

False-positive rate (I - specificity) P value
    If Research Hypothesis is actually:

Prior probability of disease Prior probability of research hypothesis
True False

(Efficacy of Drug A and (Drug A has same efficacy as B
Drug B differ in treatment  in treatment of ulcer disease)
of ulcer disease)

Predictive value of a positive (or
negative) test result

Predictive value of a positive (or
negafive) study

The relationships between the four possible outcomes of a diagnostic test are usually
expressed as the sensitivity  and specificity  of the test, which are determined by
assuming that the presence or absence of the disease is known.  Sensitivity is the
likelihood that a test result will be positive in a patient with the disease.  Specificity
is the likelihood that a test result will be negative in a patient without the disease. If
the result from a fine-needle aspiration is positive in 80 of 100 women with breast
cancer, and negative in 95 of 100 women without cancer, the test would have a
sensitivity of 80% and a specificity of 95%.  There is another term that is useful in
the analogy: the false-positive rate (1-specificity), which is the likelihood that a test
result will be (falsely) positive in someone without the disease.  In this example, the

Positive This is a true-positive study: This is a false-positive study:
And Result of result is correct result is incorrect
Study  is:

Negative This is a false-negative study: This is a true-negative study
result is incorrect result is correct

Knowing the sensitivity and specificity of a test is not aufficient, however, to
interpret its results: that interpretation also depends on the charactertistics of the
patient being tested. If the patient is a 30-year-old woman uith several soft breast
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masses, a positive result from a fine-needle aspiration (even with a false-positive rate
of only 5%) would not suffice to make a diagnosis of cancer. Similarly, if the patient
is a 60-year-old woman with a firm solitary breast mass, a negative aspirate result
(with a sensitivity of 80%) would not rule out malignancy19  Clinicians use these
sorts of patient characteristics to estimate the prior probability of the disease—the
likelihood that the patient has the disease, made prior t to knowing the test results.
The prior probability of a disease is based on the history and physical findings,
previous experience with similar patients, and knowledge of alternative diagnostic
explanations. It can be very high (breast cancer in the 60-year old woman with a
single firm mass), very low (breast cancer in the younger woman), or somewhere in
between. Although they may not realize it, clinicians express prior probabilities
when using phrases such as "a low index of suspicion" or "a strong clinical
impression."

a fine-needle aspirate (with a specificity of 95% and a sensitivity of 80% for cancer)
results in a very high predictive value for malignancy, about 94% (Figure). Next,
consider the 30  year-old woman with multiple soft masses. The prior probability of
cancer is low, say 1%. Even given a positive aspirate result, the likelihood that she
has breast cancer is still small (about 14%).

A Bayesian approach can also be used to determine what the reader of a research study
really wants to know—the likelihood that the research hypothesis is true, given the
study results. It combines the characteristics of the hypothesis (expressed as prior
probability), the characteristics of the study (expressed as power and the P value), and
the study results (positive or negative) to determine the predictive value of a study.
The predictive value of a positive study is the probability that given a positive result,
the research hypothesis is actually true. (The predictive value of a negative study is
the probability that given a negative result, the research hypothesis is false.)

In the same way, knowing the power and the P value of a study is not sufficient to
determine the truth of the research hypothesis. That determination also depends on the
characteristics of the hypothesis being studied. Suppose one drug is diphenhydramine
hydrochloride (Benadryl) and the other is chlorpheniramine maleate (Chlor-Tri-
meton): a positive study (at P=0.05) would not ensure that one of the drugs is
effective in the treatment of ulcers  Similarly, if one drug was ranitidin hydrochloride
(Zantac) and the other placebo, a negative study (even with power of 0.80) would not
establish the ineffectiveness of ranitidine. The characteristics of a research hypothesis
determine its prior probability—an estimate of the likelihood that the hypothesis is
true, made prior to knowing the study results. The prior probability of a hypothesis
is based on biologic plausibility, previous experience with similar hypotheses. and
knowledge of alternative scientific explanations Analogous to the situation with
diagnostic tests, the prior probability of a research hypothesis can be very high (that
an H2-blocker, such as ranitidine is more effective than placebo in the treatment of
ulcers), very low (that the efficacies of two H1-blockers, such as diphenhydramine
and chlorpheniramine, differ in the treatment of ulcer disease), or somewhere in
between. Authors of research reports indicate prior probabilities with terms like
"unanticipated" or "expected" when they discuss their results.

The predictive value of a research study, however, is usually harder to estimate than
the predictive value of a diagnostic test (see "Limitations" section). Nonetheless, the
basic analogy remains valid: the prior probability of the hypothesis must be
combined with the power and the P value of the study to determine the likelihood
that the research hypothesis is true. In the next section, we discuss how this analogy
can be used to understand several statistical concepts.

IMPLICATIONS

Specificity and the P Value

How low must a P value be for it to be accepted as evidence of the truth of a research
hypothesis? This question is analogous to asking: how high must the specificity of a
test be to accept a positive test result as evidence of a disease? Requiring that a P
value be less than 0.05 before it is "significant" is as arbitrary as requiring that a
diagnostic test have a specificity of at least 95%. A more important criterion, but one
that is not as easy to quantitate, is whether the results of the study combined with the
prior probability of the research hypothesis are sufficient to suggest that the
hypothesis is true. Consider the hypothesis, tested in the Lipid Research Clinics
Primary Prevention Trial 20  that cholestyramine resin decreases the incidence of
coronary heart disease in hypercholesterolemic men. This research hypothesis had at
least a low to moderate prior probability, based on previous evidence. Even with a
"nonsignificant" P value of .094 (the two-sided equivalent of the controversial one-
sided P=.047 reported by the investigators), the hypothesis is likely to be true.

The advantage of Bayesian analysis in interpreting diagnostic tests is that it can
determine what the clinician really wants to know—the likelihood that the patient
has the disease, given a certain test result. Bayesian analysis combines the
characteristics of the patient (expressed as the prior probability of disease), the
characteristics of the test (expressed as sensitivity and specificity), and the test result
(positive or negative) to determine the predictive value of a test result. The predictive
value of a positive diagnostic test is the probability that given a positive result, the
patient actually has the disease. (The predictive value of a negative test is the
probability that given a negative result, the patient does not have the disease.)

It is also a mistake to believe a research hypothesis just because a P value is
statistically significant. Consider a study that found that drinking two or more cups
of coffee a day was associated with pancreatic cancer (P<.06).2' This hypothesis had a
very low prior probability: the authors called the association "unexpected." Thus,As an example, recall the 60-year-old woman with a firm breast mass. The prior

probability that the mass is malignant is moderate, say 50%. A positive result from
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finding a significant P value did not establish the truth of the hypothesis; subsequent
studies, including one by the same authors, failed to confirm the association. 22-27 Even if a diagnostic test is adequately performed, there may be several explanations

for the result. An elevated serum amylase level, for example. has a high specificity to
distinguish patients who have pancreatitis from those with nonspecific abdominal
pain. However, there are extrapancreatic diseases (such as bowel infarction) that
elevate the amylase level and that must be considered in the differential diagnosis. In
the same way, although a low P value may indicate an association between an
exposure and a disease (like the association between carrying matches and lung
cancer), a confounder (cigarette smoking) may actually be responsible. Readers of
research studies should always keep in mind potential confounding explanations for
significant P values.

Of course, many diagnostic test results are not simply reported as "positive"; they
also indicate how abnormal the result is. The more abnormal that result, the less
likely that it is just a chance finding in a normal person. If the upper limit of normal
for a serum thyroxine level at a specificity of 95% is 12.0 µg/dL (154 nmol/L), then
a thyroxine level of 18.0 µg/L (232 nmol/L) is almost certainly abnormal. The
question becomes whether it represents hyperthyroidism, another disease, or a
laboratory error. By analogy, if the cutoff for calling a study positive is a P value
less than .05, then a P value of.0001 means chance is an extremely unlikely
explanation for the findings. The question becomes whether the results indicate the
truth of the research hypothesis or are a result of confounding or bias (see
"Laboratory Error and Bias" and "Alternative Diagnoses and Confounding
Explanations" sections). Because the P value is analogous to the false-positive rate
(1- specificity), a study with a very low P value is like a test with very high
specificity: both give few false-positive results due to chance, but may require careful
consideration of other possible explanations.

Better Tests and Bigger Studies

Increasing the sample size in a research study is similar to using a better diagnostic
test. Better diagnostic tests can have more sensitivity or specificity or both, Iarge
studies can have greater power or lower levels of statistical significance or both.
Often the choice of a diagnostic test is a matter of practicality: biopsies are not
feasible in every patient for every disease. Similarly, power or the significance level
may be determined by practical considerations, since studies of 20 000 or more
subjects cannot be done for every research question. Of course, bigger studies may
find smaller differences, just like better tests may detect less advanced cases of a
disease. A small but statistically significant difference in a research study is like a
subtle but definite abnormality on a diagnostic test; its importance is a matter of
judgment.

Sensitivity and Power

When the result of a diagnostic test that has a high sensitivity is negative, such as a
urinalysis in the diagnosis of pyelonephritis, it is especially useful for ruling out a
disease. Similarly, when a powerful research study is negative, it strongly suggests
that the research hypothesis is false. However, if the sensitivity of a test is low, such
as a sputum smear in a patient with possible tuberculosis, then a negative result does
not rule out the disease.9 In the same way, a negative study with inadequate power
cannot disprove a research hypothesis,28,29

Intentionally Ordered Tests and Prospective Hypotheaea

A positive result on a single intentionally ordered test is more likely to indicate
disease than the same result that turns up on a set of routine admission laboratory
tests. Similarly, the P value for a research hypothesis stated in advance of a study is
usually more meaningful than the same P value for a hypothesis generated by the
data. The reason is that clinicians usually order tests and investigators state
hypotheses in advance when the prior probability is moderate or high. Thus the
predictive values of positive results are generally greater for intentionally ordered tests
and prospectively stated hypotheses.

Laboratory Error and Bias

When unexpected or incredible results on a diagnostic test are found, such as a serum
potassium level of 9.0 mEqlL (mmol/L) in an apparently well person, the first
possibility to consider is laboratory error: Was the test adequately performed? Did the
sample hemolyze? Was the specimen mislabeled? Similarly, readers of a research
study, such as a trial of biofeedback in the treatment of hypertension, must always
consider the possibility of bias, especially if the study yields surprising results: Was
the study adequately designed and executed? Did the investigators assign subjects
randomly? Was blood pressure measured blindly? 30  Improperly performed tests and
biased studies do not ~ ield reliable information, no matter how specific or significant
their results.

Not all unexpected results however, have low prior probabilities. Occasionally,
clinicians or investigators are just not smart or lucky enough to consider the
diagnosis or hypothesis in advance. For example, a house officer caring for a patient
with fatigue and vague abdominal symptoms might ignore a serum calcium level of
10.5 mg/dL (2.62 mmol/L) until the attending physician mentions the possibility of
hyperparathyroidism in rounds the next morning. Similarly, researchers might
disregard the association between smoking and cervical cancer until a plausible
biologic explanation is suggested.31-34 Estimating the prior probability of a

Alternative Diagnoses and Confounding Explanations
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hypothesis on the basis of whether it was considered prospectively is a useful, but
not infallible, method. The truth, elusive though it sometimes may be, does not
depend on when a hypothesis is first formulated.

nonsignificant P values to change incrementally the likelihood that a research
hypothesis is true. Howeever, just as only those tests that are relevant to the
diagnosis in question should be combined, only those research studies that address the
same research hypothesis should be pooled.

Multiple Tests and Multiple Hypothesea
Confidence Intervals

Most of us are intuitively skeptical when one of 50 substances on a checklist is
associated with a disease at P<.05 because of the likelihood of finding such an
association by chance alone. A standard technique for dealing with this problem of
testing multiple hypotheses is to use a more stringent level of statistical
significance, thus requiring a lower P value.35, 36  This approach is simple and
practical, but it leads to some unsatisfying situations. It seems unfair, for example,
to reduce the required significance level for a reasonable hypothesis just because
other, perhaps ridiculous, hypotheses were also tested. What if the disease was
mesothelioma and one of the exposures was asbestos: should a more stringent level
of statistical significance be required because 49 other substances were also included?
Should the level of significance be reduced when testing the main hypothesis of a
study whenever additional hypotheses are considered? Need statistical adjustments for
multiple hypothesis testing be made only when reporting all of the hypotheses in a
single publication?

There is no ready diagnostic test analogy for confidence intervals from research
studies (the concept of test precision comes closest). But because confidence intervals
are commonly mis-interpreted as expressions of predictive value, they merit a short
discussion. The term "confidence interval" is unfortunate, because it leads many
people to believe that they can be confident that the interval contains the true value
being estimated. Actually, confidence intervals are determined entirely by the study
data: the prior probability that the true value lies within that interval is not at all
considered in the calculations. A 95% confidence interval is simply tne range of
values that would not differ from the estimate provided by the study at a statistical
significance level of 0.05 38,39.

Confidence intervals are useful because they define the upper and lower limits
consistent with a study's data. But they do not estimate the likelihood that the results
of the research are correct. A confidence interval provides no more information about
the likelihood of chance as an explanation for a finding than does a P value.40  As an
example, suppose a well-designed study finds that joggers are twice as likely as non-
joggers to develop coronary heart disease, with a 95% confidence interval for the
relative risk of 1.01 to 3.96. (This is equivalent to rejecting the null hypothesis of
no association between jogging and heart disease at P=.05). Despite a 95% confidence
interval that excludes 1.0, there is obviously not a 95% likelihood that joggers are at
an increased risk of coronary heart disease. There are many other studies that have
found that exercise is associated with a reduced risk of heart disease. Given the low
prior probability of the hpothesis that jogging increases the risk of coronary heart
disease, chance (or perhaps bias) would be a more likely explanation for the results.

This vexing problem of multiple hypothesis testing resembles the interpretation of a
serum chemistry panel. When a clinician evaluates a patient with a swollen knee, a
serum uric acid level of 10.0 mg/dL (0.6 mmol/L) has the same meaning no matter
how many other tests were also performed on the specimen by the autoanalyzer.
However, an unanticipated abnormal value on another test in the panel is likely to be
a false-positive: that is because the diseases it might represent usually have low prior
probabilities, not because several tests were performed on the same sample of serum.
Similarly, testing multiple hypotheses in a single study causes problems because the
prior probabilities of such hypotheses tend to be low: when investigators are not
sure, what they are looking for, they test many possibilities. The solution is to
recognize that it is not the number of hypotheses tested, but the prior probability of
each of them, that determines whether a result is meaningful. LIMITATIONS

Confirmatory Tests and Pooled Studies While it provides several useful insights the analogy between diagnostic tests and
clinical research is not perfect. It is easier to determine the prior probability of a
disease, based on the prevalence of the disease in similar patients, than the prior
probability of a hypothesis, based on the prevalence of the truth of similar
hypotheses. Similarity in patients can be defined by characteristics known to be
associated with a disease, such as age, sex, and symtoms.11  But what defines similar
hypotheses? Thus the prior probability of most research hypotheses tends to be a
subjective estimate (although, in practice estimates of the prior probability of a
disease are generally subjective as well).

When a single diagnostic test is insufficient to make a diagnosis, additional tests are
often ordered, some results of which may be positive and some negative. The
clinician revises the probability of the disease by combining these results, often
weighting them by the tests' characteristics. In a patient with a swollen leg, for
example, a normal result from a Doppler study would lowerwer the probability of
deep venous thrombosis, but an abnormal result of a fibrinogen scan might raise it
aufficiently to make the diagnosis. In the same way, it may be necessary to combine
the results of several research studies weighting them by the characteristics of each
study. This process, known as pooling, allows studies with both significant and
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Second, as long as there is a gold standard for its diagnosis, a disease is either present
or absent: there are only these two possibilities. If a group of patients known to have
the disease is assembled, a single value for the sensitivity of a test can be determined
empirically. But there is no single value for the power of a research study: it depends
on the sample size, as well as the magnitude of the actual difference between the
groups being compared. A study comparing IQ in internists and surgeons for
example, might have a power of only 50% to detect a difference between them if
surgeons actually scored five points higher than internists, but a power of 98% if
surgeons actually scored ten points higher. Since the actual difference is unknown, a
unique value for power cannot be calculated.
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